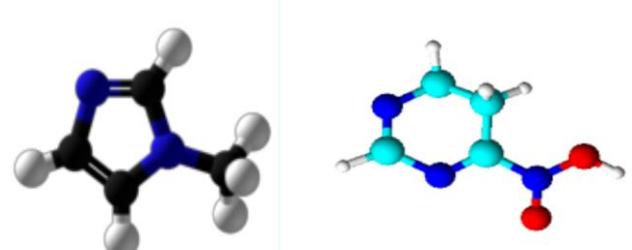


Synthesis, Characterisation and Anti Tumor-Activity Evaluation Palladium Metal Complexes with substituted Imidazoles

Dr. Anshu Srivastava^{1,a)}

Department of Applied Science and Humanities, Kanpur Institute of Technology, Kanpur-208001


Abstract: Pd(II) complexes with imidazole and substituted imidazoles derivatives were obtained by reacting substituted imidazoles with PdCl₂. The complexes were characterized by elemental analyses, FT-IR, and ¹H NMR etc.. All synthesized compounds having antitumor activities. The Pd(II) complexes were transmitted for their antibacterial and cytotoxic activities .. Several palladium complexes of the type [Pd(im)2Cl₂], [Pd(im)3Cl]Cl, and [Pd(im)4]Cl₂ (im = imidazole **2**, 1-methylimidazole **4**, 1,2-dimethylimidazole **5**, 1-butylimidazole **7**, **4a**, 1-phenylimidazole **8**, 1-phenylimidazoline **9**, and 1-methylimidazoline **11**) were prepared and structurally characterized. The resulted compound have great anti tumour properties it were proven by several experimental and physical methods.

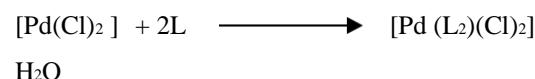
Keywords: Palladium metal, substituted imidazoles, Cancer

Introduction: Metal complexes have great characteristics of enhancing act as antitumor agents. The metal attached with ligand to form complexes which behave as antitumor agents[5,6]. Synthesis, structure elucidation and anticancer activity of Palladium complexes In order to understand palladium imidazoles interactions and anticancer activity, several palladium complexes of substituted imidazoles derivatives were prepared. We also define the imidazole chemistry and its derivatives explaining their methods of preparation and act as potential anti tumour agents. It is also going to explain that it has considerable interest of heterocyclic compounds and its anti tumour activity. The magnetic values of the synthesized complexes sustained at normal temperature.

Experimental

(a) Materials Substituted uracils were procured from Aldrich Chemical Company, U.S.A. and used as such. PdCl₂ ,Substituted imidazoles were taken from Sigma

Chemicals Co. (USA) . All the reactions happen in distilled water only.


(b)- Preparation of the substituted Imidazoles:

Palladium (II) complex with Substituted imidazoles is obtained by mixing 0.2 N HCl solution of metal

chloride mix with methanol and Imidazole(0.114mol) and on quick heating the mixture was fused for 2 hours in water bath . The complexes will be precipitated out .

:

CH₃OH

Where L = Substituted imidazoles

FIG 1-Substituted imidazoles

III.Spectroscopic analysis:

The IR spectrum of uracil and ligands shows three strong bands at 1735 , and 1620 cm⁻¹. These are indicating the presence of ketonic and enolic forms of C=O group, respectively[31]. In the resulted metal complex the C=O stretching band is seen at 1520 cm⁻¹,indicating that the presence of ketonic group is present in this complex [38, 39]. While, the bright and dark band at 1393cm⁻¹ in the spectrum of the Pd(II) complex with substituted imidazoles is available. [38].

Table –I Viscosity of benzene solution of Imidazole and substituted imidazoles

ligands (temp; ⁰ C)	Molality	Specific viscosity
Imidazole(30 ⁰ C).....	0.036	0.0106
	0.073	0.0248
	0.146	0.0549
Imidazole(50 ⁰ C)...	0.146	0.0410
	0.461	0.1500

4 (or 5) Methyl imidazole(30^0C).....	0.463	0.1686
	0.040	0.0071
	0.080	0.0354
	0.242	0.1187
	0.249	0.1277
	0.475	0.2925
		0.3262
	0.493	0.4113
	0.607	0.7801
	1.075	0.991
	1.362	1.6524
	2.068	2.3138
	2.848	3.1560
	3.738	0.0910
(or 5) Methyl imidazole(50^0C).....	0.242	
	0.249	0.0930
	0.475	0.2140
	0.493	0.2370

Table –II Dipole Moment in Debye Units of some imidazoles in Different solvents

Compound	Naphthalene	Benzene	Dioxane	Carbon tetra chloride
Imidazole.....	5.7(97^0)	6.2(70^0)	4.8(30^0)	
4 (or 5)-Methyl.....	-	6.2(70^0)	5.1(20^0)	5.8(18^0)
1-Methyl.....	-	3.6(20^0)	3.8(20^0)	

Table –III Variation (with concentration) of the Dipole Moment of Imidazole in Benzene

Mole fraction of solute	Dipole moment, Debye unit
0.005951	5.62
0.001140	4.42
0.000233	3.93

Table –IV Surface Tension of Imidazole and substituted imidazoles

Compound	Temperature(^0C)	Surface Tension, dynes/cm
Imidazole	110.0	36.82
	150.0	33.85
	205.0	30.05
4 (or 5) Methyl imidazole	20.0	38.70
	56.0	36.21
	110.0	32.36
	153.0	29.28

Table –V Heat of melting and solution in benzene at Varying Concentration of substituted imidazole

Molality	Heat of solution, cal/mole (21^0C)	Heat of Fusion cal/mole
0.15	-3218	-2838
0.23	-2175	-

Table -VI Melting point of a number of Imidazole salts

Salts	M.P., °C
Nitrate	118
Chloroaurate	dec.190
Chloroplatinate	dec.200
Dimolibdate	208-212
Picrate	224-226
Diliturate	232,252,225
	202
	99

Conclusion

Thus, It is found that the resulted. Palladium metal imidazole complexes is useful antitumor agent. Further, the most important gist can be showing that. Palladium complexes are the very useful tool for anti tumour activities. These complexes are widely used for the treatment of different types of tumours. They were tested and applied on mice and monkeys in CDRI Lucknow and we found that it behaves as potential antitumor agent.

REFERENCES:

- Wamhoff H, Dzenis J, Hirota K (1992) Uracils: versatile starting materials in heterocyclic synthesis. *Adv Heterocycl Chem* 55:129–259. doi:10.1016/S0065-2725(08)60222-6
- Putz MV, Duda, S NA (2013) Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives' anti-HIV action. *Struct Chem* 24:1873–1893. doi:10.1007/s11224-013-0249-6
- Morten, HH. N. 2010. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. *BMD Biotechnology*, 10(21):1-7.
- Miquel B.-O.; Carolina, E.; Angel, T.; Angel, G.-R., and Antonio F. 2011. RNAs, uracil quaret model with a non-essential metal ion. *Chem. Comm. (Camb)*, 47(16): 4646-4648 .
- Heidelberger C (1984) In: Holand JF, Frei E (eds) Pyrimidine and pyrimidine antimetabolites in cancer medicine. Lea and Febiger, Philadelphia, pp 801–824
- Igor, P.P.; Levan, M.; Barbara, J.M. and Jill, S.J. 1997. Presence and consequence of uracil in preneoplastic DNA from folate/methyl-deficient rats. *Carcinogenesis*, 18(11):2071-2076.
- Kulikowski T (1994) Structure-activity relationships and conformational features of antiherpetic pyrimidine and purine nucleoside analogues. *Pharm World Sci* 16:127–138. doi:10.1007/BF01880663
- IsobeY, Tobe M, InoueY, Isobe M, Tsuchiya M, HayashiH(2003) Structure and activity relationships of novel uracil derivatives as topical anti-inflammatory agents. *Bioorg Med Chem* 11:4933– 4940. doi:10.1016/j.bmc.2003.09.012
- Baraldi PG, Romagnoli R, Guadix AE, Pineda de las Infantas MJP, Gallo MA, Espinosa A, Martinez A, Bingham JP, Hartley JA (2002) Design, synthesis, and biological activity of hybrid compounds between uramustine and DNA minor groove binder distamycin A. *J Med Chem* 45:3630–3638. doi:10.1021/jm011113b
- Prashansa, A. 2016. Non-coding ribonucleic acid: a new anticancer drug target. *J Pharmacovigil*, 4(3):1-2.
- Rastogia, V. K. and Alcolea, P. M. 2011. Vibrational spectra, tautomerism and thermodynamics of anticarcinogenic drug:5-Fluorouracil. *Spectrochim. Acta A Mol Biomol Spectrosc.*, 79(5):970-977.
- Medoff G, Swartz MN (1969) Induction of a defective phage and DNA methylation in *Escherichia coli* 15– T . *J Gen Virol* 4:15–27
- Pranita U. Gawande; Mandlik P. R. and Aswar1 A. S. 2015. Synthesis and characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO₂(VI) complexes of Schiff base derived from isonicotinoyl hydrazine, *Indian J Pharm Sci.*, 77(4): 376–381.
- Michael J. Carney; Nicholas J. Robertson; Jason A. H
- Oliev R (1994) Response to auxin by cells of *Riella helicophylla* during reversible arrest in different cell-cycle phases. *Planta* 194:510–515
- Cheng CC, Roth B (1982) Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines. *Prog Med Chem* 19:269–331
- Mol Divers (2016) 20:153–183 179
- Singh SJ (2008) Laser Raman and infra-red spectra of biomolecule:5-aminouracil. *J Phys* 70:479–486
- Bányász A, Karpati S, Mercier Y, Reguero M, Gustavsson T, Markovitsi D, Improtta R (2010) The peculiar spectral properties of amino-substituted uracils: a combined theoretical and experimental study. *J Phys Chem B* 114:12708–12719. doi:10.1021/jp105267q
- Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. *Nat. Rev. Cancer* 3, 330–338 (2003).
- Bednarek E, Dobrowolski JCz, Dobrosz-Teperek K, Sitkowski J, Kozerski L, Lewandowski W, Mazurek AP (1999) Theoretical and experimental 1H,13 C,15 N, and 17O NMR spectra of 5-nitro, 5-amino, and 5-carboxy uracils. *J Mol Struct* 482–483:333–337
- Weissman, S. A. & Zewge, D. Recent advances in ether dealkylation. *Tetrahedron* 61, 7833–7863 (2005).
- Johnson TB, Matsuo I (1919) Researches on pyrimidines. LXXXVII. Alkylation of 5-amino-uracil. *J Am Chem Soc* 41:782–789. doi:10.1021/ja02226a011
- Song, F., Garner, A. L. & Koide, K. A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanism. *J. Am. Chem. Soc.* 129, 12354–12355 (2007).
- Santra, M., Ko, S.-K., Shin, I. & Ahnz, K. H. Fluorescent detection of palladium species with an O-propargylated fluorescein. *Chem. Commun.* 46, 3964–3966 (2010).
- Güetschow M, Hecker T, Thiele A, Hauschildt S, Eger KJ (2001) Aza analogues of thalidomide: synthesis and evaluation as inhibitors of tumor necrosisfactor- α production

in vitro. *Bioorg Med Chem* 9:1059–1065. doi:10.1016/S0968-0896(00)00323-0

25. Liu, B. et al. A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. *Chem. Commun.* 48, 2867–2869 (2012).

26. Pal, M., Parasuraman, K. & Yeleswarapu, K. R. Palladium-catalyzed cleavage of O/N-propargyl protecting groups in aqueous media under a copper-free condition. *Org. Lett.* 5, 348–352 (2003).

25. Escoubet, S., Gastaldi, S. & Bertrand, M. Methods for the cleavage of allylic and propargylic C–N bonds in amines and amides – selected alternative applications of the 1,3-hydrogen shift. *Eur. J. Org. Chem.* 2005, 3855–3873 (2005).

27 Johnson TB, Hahn DA (1933) Pyrimidines: their amino and aminoxy derivatives. *Chem Rev* 13:193–303. doi:10.1021/cr60045a002

28. Rambabua, D., Bhavani, S., Swamy, N. K. & Rao, M. V. B. Pd/C mediated depropargylation of propargyl ethers/amines in water. *Tetrahedron Lett.* 54, 1169–1173 (2013).

29. Bogert MT, Davidson D (1933) The preparation of 5-aminouracil and of some of its derivatives. *J Am Chem Soc* 55:1667–1668. doi:10.1021/ja01331a059

30. Zajac MA, Zakrzewski AG, Kowal MG, Narayan S (2003) A novel method of caffeine synthesis from uracil. *Synth Commun* 19:3291–3297. doi:10.1081/SCC-120023986

31. Ishiyama H, Nakajima H, Nakata H, Kobayashi J (2009) Synthesis of hybrid analogues of caffeine and eudistomin D and its affinity for adenosine receptors. *Bioorg Med Chem* 17:4280–4284. doi:10.1016/j.bmc.2009.05.036

32. Phillips AP (1951) Some 5-substituted aminouracils. *J Am Chem Soc* 73:1061–1062. doi:10.1021/ja01147a051

33. Benitez A, Ross LO, Goodman L, Baker BR (1960) Potential anticancer agents. XXXVI. Alkylating agents derived from 5-aminouracil. *J Am Chem Soc* 82:4585–4591. doi:10.1021/ja01502a036

34. Johnson TB, Clapp SH (1908) IX. Researches on pyrimidines: syntheses of some nitrogen-alkyl derivatives cytosin, thymin and uracil. *J Biol Chem* 5:49–70

35. Visser DW, Kabat S, Lieb M (1963) Synthesis and biological activity of methylaminodeoxyuridine and dimethylaminodeoxyuridine. *Biochim Biophys Acta* 76:463–465. doi:10.1016/0304-4111(63)90061-6

36. Shentu TY, McPherson JF, Linn BO (1966) Nucleosides. III. Studies on 5-methylamino-2'-deoxyuridine as a specific antiherpes agent. *J Med Chem* 9:366–369. doi:10.1021/jm00321a025

37. Shentu TY, McPherson JF, Linn BO (1966) Nucleosides. III. Studies on 5-methylamino-2'-deoxyuridine as a specific antiherpes agent. *J Med Chem* 9:366–369. doi:10.1021/jm00321a025

38. Boncel S, Gondela A, Maćzka M, Tuszkiwicz-Kuźnik M, Grec P, Hefczyc B, Walczak K (2011) Novel 5-(Nalkylaminouracil) acyclic nucleosides. *Synthesis* 4:603–610. doi:10.1055/s-0030-1258397